| EEE Transacti ons on Software Engi neering,

Vol .

23, No.

10, Cctober 1997, pp. 603-615.

Bounding Completion Times of Jobs with
Arbitrary Release Times, Variable Execution

Times, and Resource Sharing
Jun Sun, Mark K. Gardner, and Jane W.S. Liu

Abstract— The workload of many real-time systems
can be characterized as a set of preemptable jobs with
linear precedence constraints. Typically their execu-
tion times are only known to lie within a range of
values. In addition jobs share resources and access to
the resources must be synchronized to ensure the in-
tegrity of the system. This paper is concerned with
the schedulability of such jobs when scheduled on a
priority-driven basis. It describes three algorithms for
computing upper bounds on the completion times of
jobs that have arbitrary release times and priorities.
The first two are simple but do not yield sufficiently
tight bounds, while the last one yields the tightest
bounds but has the greatest complexity.

Keywords— Real-time systems, schedulability analy-
sis, precedence constraints, resource sharing

I. INTRODUCTION

N a real-time system, an external event may cause

a set of jobs to be released and executed. The exe-
cution of some jobs may depend upon the completion
of others. For example, pushing a button may trig-
ger an interrupt handling job which produces data to
be analyzed by an event processing job. Because the
system state is not consistent until the interrupt han-
dling job completes, the event processing job cannot
start before the interrupt handling job completes. In
addition to such precedence constraints, the release
time of a job may depend on the release time of an-
other job. For example, a data sampling job in a data
acquisition system may not be allowed to start until
a specified amount of time after the power-on job is
released in order to ensure that the system is stable.
In this paper we focus our attention on uniprocessor
systems where the workload consists of chains of jobs,
or job chains. Jobs in the same job chain are depen-
dent, i.e., a job cannot start until all the preceding
jobs in the same chain complete. In other words, no
job can start executing until its release time or un-
til all its predecessors have completed, whichever is

J. Sun is with Geoworks, Inc., 2001 Center St., Berkeley, CA
94704 USA, jsun@Qgeoworks.com.

M. K. Gardner and J. W.S. Liu are with the De-
partment of Computer Science, University of Illi-
nois at Urbana-Champaign, Urbana, IL 61801 USA,

{mkgardne,janeliu}@cs.uiuc.edu.

later. Each job has an arbitrary but fixed release
time which specifies the earliest possible time that

the job can start.

Each job has a variable execution time which 1s
known to lie within a given range. We assume that
jobs are scheduled preemptively in a priority-driven
manner. Each job has a fixed priority. Jobs may have
critical sections which synchronize access to shared
resources. We confine our attention to systems where
all resource accesses are made according to the Non-
preemptable Critical Section (NPS) protocol; each
job is nonpreemptable when it i1s in a critical section
[1]. Therefore uncontrolled priority inversion [2] can-
not occur.

We do not consider the problem of how to assign
priorities to jobs in this paper. Rather, we form ways
to find upper bounds on the completion times of jobs
under a given priority assignment, i.e., the problem
addressed here is that of schedulability analysis of the
system rather than the scheduling problem. Specif-
ically, we describe here a progression of three algo-
rithms that compute upper bounds on the comple-
tion times of jobs when they are scheduled according
to a priority-driven algorithm. The first algorithm
computes an upper bound on the effective response
times (FRT) of individual jobs in each chain and is
therefore called Algorithm ERT. The second algo-
rithm is based on an analysis of the critical job, a
concept which we will define later; it is called Algo-
rithm CJA. The third algorithm iteratively applies
Algorithm CJA to yield tighter bounds and is called
Algorithm ITR. Algorithms ERT, CJA and ITR
yield increasingly tighter upper bounds, but at in-
creasingly higher complexity. While Algorithm ERT
and Algorithm CJA can be used for on-line admis-
sion control (i.e., to determine whether the system
can accept a new chain of jobs and still ensure on-
time completion of all jobs), Algorithm ITR is more
suitable for off-line schedulability analysis.

A great deal of work has been done on timing anal-
ysis for periodic tasks [3-7]. A periodic task is an in-
finite stream of identical jobs that are released peri-
odically. The objective of timing analysis is to bound

the response times of all jobs in each task. Lehoczky
[5] developed a time-demand analysis method for this
purpose. Harbour et.al. [7] developed a method to
bound the response times of jobs where each periodic
task is a chain of subtasks. These existing methods
either cannot be applied to bound the completion
times of dependent jobs that have arbitrary release
times (e.g., the methods based on schedulable uti-
lization bounds [3, 8]) or yield unsatisfactorily loose
bounds (e.g., the time-demand analysis method [5]).
A reason for the poor performance of existing meth-
ods is that they ignore the actual release times of jobs
but work with the worst-case combination of release
times. While this treatment makes sense in timing
analysis for periodic tasks which may have release
time jitter, it causes the algorithms to be very pes-
simistic when applied to dependent jobs that have
known and fixed release times. As a matter of fact,
Algorithm ERT described in this paper also ignores
the release times of jobs. As we will see in Section
VI, the performance of this algorithm is poor com-
pared with the other two algorithms which make use
of information on release times.

The problem solved by our algorithms is also re-
lated to the walidation problem. Both problems deal
with a set of jobs with variable execution times. Ha
[9] has studied the validation problem in multipro-
cessor or distributed systems. In her work, a system
is predictable if the completion time of a job can be
bounded by the completion times of the job in the
maximum schedule and minimum schedule, where
the maximum (minimum) schedule is obtained by ap-
plying the priority-driven algorithm to the set of jobs
assuming that all jobs have their maximum (mini-
mum) execution times. As shown by an example in
the next section, the execution of a set of dependent,
preemptable jobs (with or without critical sections)
on a single processor is not predictable. Bounding
the completion times of jobs is a reasonable approach
to validating the timing constraints for these kinds of
systems. Our algorithms provide tighter bounds and,
thus, more accurate conclusions on the satisfiability
of timing constraints than the general bounds pro-
vided by algorithms in [9].

The rest of the paper is organized as follows. Sec-
tion IT formally defines the problem addressed and
introduces the notations used in the paper. Sec-
tions ITI, TV, and V present Algorithms ERT, CJA
and ITR, respectively. Section VI presents the per-
formance of the three algorithms obtained by sim-
ulation while Section VII discusses modifications to
the algorithms when jobs have jittered release times.
Section VIII concludes the paper.

II. PROBLEM FORMULATION

Again, the problem addressed here is how to deter-
mine whether every job in n independent job chains,
denoted Jq,J9,...,J,, can complete in time when
the jobs are scheduled on a processor according to a
priority-driven algorithm. We let J; ; denote the jth
job of job chain J;. By independent chains, we mean
that J; 1 has no predecessor for every : = 1,2,...,n,
and there are no precedence constraints between any
pair of jobs in two different chains. We assume that
each job J; ; has a fixed priority ¢; ; and is preempt-
able, except where stated otherwise. The execution
time of job J; ; is in the range [e; , e;':j]. Both the
;fj and the minimum exe-
cution time e;j, as well as the release time r; ; of J; ;
are known, but the actual execution time ¢; ; is not
known.

The release time r; ; of job J;; is arbitrary but
fixed. J;1 is ready for execution at its release time
ri1; for each j > 1, J; ; cannot execute until its im-
mediate predecessor J; j_1 completes. We assume
that the release time r;; of every job J;; is con-
sistent with its precedence constraints. Specifically,
the release time r; ; of a job J; ; is no sooner than
Tij—1+ € 5 1, which 1s the earliest time at which
its immediate predecessor can complete. When the
given release times do not satisfy this assumption,
we replace them with effective release times that do.
The effective release time of J; ;1 is equal to its given
release time. The effective release time of J; ; is equal
to its given release time or the sum of the effective
release time of J; ;_1 and € i 1) whichever is larger.
We lose no generality by working with the effective
release times of jobs.

Each job may also require exclusive use of some
resources. We assume that the overlapping critical
sections of every job are properly nested. Hereafter,
by a critical section we mean an outermost critical
section. The maximum execution time of every crit-
ical section is known a priori. We let dﬁj denote the

maximum execution time e

maximum duration of the kth critical section z* , of

ij
the job J; ;: dﬁj is the maximum execution time of
:E?j when the job executes alone. Finally, we let D; ;

denote the maximum duration of all the critical sec-
tions of the job.

As stated earlier, the NPS protocol is used to con-
trol accesses to resources by jobs. Such a protocol
guarantees that each job can be blocked by at most
one lower priority job for the duration of one critical
section. This fact is stated formally by the following
lemma, the proof of which can be found in [1]. The
term blocking time used in the lemma refers to the
length of the delay suffered by a job due to priority

D1 da
‘ J1 }%‘ J12 }%‘ A3 }%‘ dha ! ;
ENNEEEE R 3s
T T T T T T
0 50 100 150 200 250
T ;
Fig. 1. Simple Job Set in Example 1 he ba
BN 3s
TABLE I ; i i T T i
0 50 100 150 200 250
PARAMETERS OF JOBS IN EXAMPLE 1 ®)
Ji g bij Tig ei_y ej-i D; Fig. 2. Schedules of Jobs in Example 1
T 2 0 10 40
Jia| 4 20 5 10
Ji,3 2 75 20 30 10
T 4 130 15 50 haYe its Wors:t—case (i.e., the latest) (.:ompletlon time
T2, 3 30 10 10 while other jobs may not. In particular, when all
J22 3 60 5 40 20 jobs have their maximum execution times, we may
2.3 ! 120 20 170 60 not observe the worst-case completion times of all

inversion: a lower priority job executes while the job
waits. (The lower priority job is said to block the
job.)

Lemma 1: The maximum blocking time of a job is
the duration of the longest critical section of all lower
priority jobs that can block 1t.

Clearly, a job J; ; can never be blocked by a lower
priority job in the same job chain J;. The set of jobs
that can block a job J; ; in J; includes all the jobs
that are in chains other than J;, have lower priorities
than J; ; and have one or more critical sections.

An example of such a system is shown in Figure 1.
In this example, referred to as Example 1 later, there
are two job chains, J; and J5. J; has four jobs and
J5 has three. There are three critical sections, one
in job Jp 3, one in job Ja 5, and the other in job Js 3.
The parameters of each job are given in Table I. We
use integers to represent priorities; the greater the
integer, the higher the priority.

A job is ready at the instant when it is released or
when its immediate predecessor completes, whichever
is later. Let y; ; denote the ready time of job J; ; and
¢;,; denote its completion time. Since the first job in
a job chain J; has no predecessors, it is ready when
it is released, i.e., ;1 = 7r;1. For a later job J;;
(j > 1), we have y; ; = max{r; j,c;j—1}. The re-
sponse time of J;; is equal to its completion time
less its release time (i.e., the duration of the inter-
val (7; j, ¢ ;]), and its effective response time is equal
to its completion time less its ready time (i.e., the
duration of the interval (y; ;,¢; ;]).

Because the execution times of jobs may vary and
the scheduling algorithm is priority driven, there may
be many different schedules for a given set of jobs.
According to some of these schedules, a job may

the jobs. For example, Figure 2 shows two sched-
ules of the job chains in Example 1. In both cases,
jobs are scheduled according to their priorities. We
have the schedule in Figure 2(a) when all the jobs
have their maximum execution times. According to
this schedule, job J; ; completes at time 40. However
when the execution time of J; ; is reduced from 40
to 30, we obtain the schedule in Figure 2(b) where
the completion time of Jy; is 50. As it turns out,
this is the worst-case completion time of J; ;. This
example shows that systems considered in this pa-
per are not predictable in general [9]. To bound the
completion times of jobs, we can exhaustively simu-
late the execution of the system and search for the
worst-case completion times of all jobs. The com-
plexity of a brute-force search is O(EY), where E is
the length of the range [e; ;, e;'jj] for alli and j and N
is the total number of jobs in the system. Clearly the
exhaustive approach is impractical for most real-life
systems. We focus here on analytical methods which
give us upper bounds on the completion times of jobs
rather than finding the exact worst case completion
time.

III. ALcoriTaM ERT

Algorithm ERT first bounds the effective response
times of jobs and then derives the bounds on com-
pletion times from the effective response times. To
motivate this algorithm, we focus on a job J; ; in job
chain J;. Obviously, a job other than J; ; can execute
during the interval (y; ;, ¢; ;] only if it is in a different
job chain than J;. Furthermore, it must have a pri-
ority no lower than the priority ¢; ; of J; ; or it must
be in a critical section at y; ;.

Figure 3 illustrates a job chain J; (k #). The
shaded boxes represent the jobs in J; whose prior-
ities are lower than ¢; ;, and white boxes represent

interference block interference block interference bIPCK

I I I I I I HPUt:

| I:l I:l | I:l | I:l I:l | I:l | | 1. The target job Ji g

| | | | I:l | I:l 1 2. Asetd of jobs where each job Ji ; has the release time
I I I I I

I I I I I

I

Fig. 3. Interference Blocks

Jjobs whose priorities are equal to or higher than ¢; ;.
The lower priority jobs divide the chain Jj into sub-
chains, each of which contains only jobs with prior-
ities higher than or equal to ¢; ;. In this example,
there are three such equal or higher priority sub-
chains. We call such a subchain an interference block
of J; ;. In general, an interference block of J; ; is
a subchain {Jg;, Jk 141, ..., Jk,itu} of Ji, for some
k # i that has the following properties. Priori-
ties @r 1, Pk i+1, .-, Pk,i+u are higher than or equal
to ¢; ;; either Ji; has no predecessor or ¢ ;_1 is
lower than ¢; ;; and either Jg ;4. has no successor
Or ¢k +u+1 is lower than ¢; ;. Except for a critical
section of a lower priority job that has already begun
at y; j, only jobs from the interference blocks of J; ;
can execute during the interval (y; ;,¢;;]. Further-
more, since the interference blocks are separated by
one or more jobs whose priorities are lower than J; ;,
it is impossible for jobs in more than one interference
block of the same chain to execute in (y; ;, ¢; ;]. Con-
sequently, when we want to bound the interference of
other jobs on J; ; (i.e., the amount of time J; ; can
be delayed by other jobs of equal or higher priority),
we only need to consider one interference block from
each job chain other than J; This allows us to more
tightly bound the possible interference of jobs on J; ;
once it becomes ready at y; ;.

We focus now on finding the maximal interference
suffered by J; ;. Hereafter, we call the job whose
completion time we are trying to bound the tar-
get job. By an interference block, we mean specif-
ically an interference block of the target job. Sup-
pose that a job chain J; has my interference blocks,
and My ; is equal to the sum of the maximum exe-
cution time of jobs in the /th interference block in
J;. As we have discussed in the previous paragraph,
the mazimum interference by equal or higher priority
jobs in J; on the target job J;; is never more than
the maximum of My for all { = 1,2,...,my (ie.,
maxi<i<m, {Mg,}). This is the basis of Algorithm
Interference. For a target job J; j, the algorithm com-
putes an upper bound totallnter(J;;,J) of the to-
tal maximum interference by equal or higher priority
jobs in all job chains other than J;. In other words,
totallnter(J; ;,J) = Ek#maXnggmk{AMk,l} The

7k,1, the priority ¢ ;, and the range [e, ;, e:l] of
execution times.
Output:
1. totallnter(J; j,J), the total maximum interference by
jobs in job chains other than J;.
2. minInter(J; ;,J), the minimum among the maximum
interference by jobs in job chains other than J;.

Algorithm:

1. totallnter = 0, minInter = Zk;ﬁz et

1=1 %k,
2. For every job chain J; other than J;,
(a) find the interference blocks in Jy;

(b) if there are no interference blocks in J;, My = 0;
otherwise, for every [from 1 to my, find My ; and

My, = max)<i<m, {Mg,1};
(c) totallnter = totallnter + My;
(d) minInter = min(minInter, My).

3. Return totallnter and miniInter.

Fig. 4. Algorithm Interference

algorithm also calculates ming; maxi<i<m, { Mk };
we denote this minimum of maximum interferences
by jobs in other jobs chains by minInter(J; ;,J). Fig-
ure 4 describes this algorithm.

Because jobs contend for resources, we must also
consider lower priority jobs that can block the target
job J; ;. We let block(J; ;,J) denote the duration of
the longest critical section of all the jobs that are
in job chains other than J; and have lower priorities
than Jl'yj.

An upper bound of the total delay the target job
may suffer (i.e., the total maximum execution times
of all the jobs in other job chains that may execute

i (yi 3, cij]) is

delay(J; j,J) = totallnter(J; ;,) + block(J; ;,J)

1)
However, we observe that it is not possible for the
target job to be delayed by an interference block
of equal or higher priority jobs in a job chain Jg
and at the same time be blocked by a lower pri-
ority job in Ji. (The reason is obvious: if a job
in J; blocks the target job, it will be preempted
by the target job when it exits the critical section
and, therefore, a subsequent interference block in Jj
cannot become ready for execution until the target
job completes and the blocking job resumes.) We
can safely improve the upper bound by subtracting
min{ block(J; j,J), mininter(J; ;,J)} from the sum
totallnter(J; ;,J) + block(J; j,J). Therefore, an up-

per bound on the duration of interval (y; ;,¢; ;],
which is the effective response time of J; ;, satisfies
the inequality ¢; ; — y5 ; < e;'jj + delay(J; ;,J) where

delay(J; j,J) = totallnter(J; ;,J) + block(J; ;,J)

TABLE II
delay(J; j,J) FOR JOBS IN EXAMPLE 1

Jig | Jig | Jia | Jia | Joa | 2
(2) 60 60 60 60 50 50

J23
130

— min{minInter(J; ;,J), block(J; ;,J)}

A simple transformation gives
cij < wij+ el + delay(Ji;, J) (3)

For the first job J; 1 in the job chain J;, r; 1 = yi1.
An upper bound ¢; 1 of ¢; 1 is given by

éi,l :ri,1+6:1+delay(‘]i,17']) (4)

For a job J;; (j > 1) that is not the first job in the
chain, its ready time y; ; is equal to max{e; ;_1,7; ;}.
Therefore an upper bound ¢é; ; of ¢; ; is

éiyj = max{éiyj_l, 7"2'7]'} + ei’j + delay(Jm-, J) (5)

By applying Eqgs. (4) and (5) to jobs in their exe-
cution precedence order, we can obtain an bound on
the completion time of every job.

In summary, for each target job J;;, Algo-
rithm ERT first calculates totallnter(J;;,J) and
minlnter(J; j, J) according to Algorithm Interference
and finds the blocking time block(J; ;,J). It then
computes delay(J; j,J) and ¢é; ; according to Egs.
(3), (4) and (5). The complexity of Algorithm ERT
is O(N?), where N is the total number of jobs in the
system.

As an example, we compute the delay for every
Jjob in Example 1. From the perspective of J; 1, jobs
Ja,1 and Ja 2 have equal or higher priorities and form
one interference block. The maximum execution time
of this block is the sum of the maximum execution
times of Jy 1 and Ja 5, which is 50 time units. Since
Ja 3 contains a critical section and has a lower priority
than J; 1, the possible blocking delay suffered by J; 1
is 60 time units. Thus delay(J; 1, J), the amount of
delay suffered by Ji 1, is 50 4+ 60 — min{50, 60} = 60.
From the perspective of job Jy 1, jobs Ji 1 and J; 3
have lower priorities, and jobs Ji 2 and J; 4 have
higher priorities. Since J; 2 and .J; 4 are separated
by Ji,3, they form two different interference blocks.
The maximum execution times of these two inter-
ference blocks are 10 time units and 50 time units,
respectively. The delay due to the critical section
in Jy 3 is 10 units. Consequently delay(Jz2 1,J), the
amount of delay suffered by Js 1, is 50 time units. In
a similar manner, the delay suffered by each of the
other jobs in Example 1 is computed and listed in
Table II. Based on these bounds on the maximal de-
lays each job can suffer according to Algorithm ERT,

we apply Eqns. (4) and (5) to obtain bounds on the
completion times of all the jobs in Example 1.

11 = 7’1,1+6f1+delay(J171,J): 100

€12 max{51,1,7”1,2}+6f2+delay(]lyg,J) =170
€1,3 max{¢i 2,713} + 6f3 + delay(J; 5,J) = 260
C1,4 max{éy 3,71 4} + 6f4 + delay(J; 4,J) = 370
€21 7’2,1+6;1+delay(J271,J): 90

€2, max{és 1,722} + 6;2 + delay(Jz 2,J) = 180
¢y = max{éy, a3} +ed g+ delay(Jz 5, T) = 380

IV. ArcoriTHM CJA

Algorithm ERT is simple to understand, easy to
implement, and has relatively low complexity. How-
ever, 1t often does not give satisfactory bounds. To
illustrate, we examine job J; 5 in Example 1. The
bound on its completion time is 180 time units. Half
of the bound is contributed by the completion of its
immediate predecessor J5 ; at time 90, while 50 units
of possible delay are contributed by job J; 4. We
observe that its predecessor Jo 1 completes at time
90 only if Jo 1 has been delayed by J; 4 for 50 time
units. Yet the same 50 time units of delay from J; 4
is counted again in computing ¢ 5. Similarly, the
delay from J3 3 is counted twice in the upper bound
of the completion time ¢; 3 of J; 3. Algorithm CJA
overcomes this problem by considering the subchain
that contains the target job as a whole rather than
dealing with the target job in isolation.

To motivate Algorithm CJA, suppose that a job
chain J; has five jobs and we want to bound the com-
pletion time of the target job J; 5. Figure 5 shows
a possible worst-case schedule for J; 5, i.e., a sched-
ule in which J; 5 has its maximum completion time.
Since all the release times are known, the completion
time ¢; 5 is equal to r; x plus the duration of the in-
terval (r;k,ci5] for k= 1,2,...,5. If we can find a
tighter bound on the duration of these intervals, we
can find a tighter bound on the completion time of
Ji 5. We examine the critical job J; .(;) of each tar-
get job J; ; for this purpose. In a schedule, J; .
is the last job in J; before and including J; ; whose
ready time is equal to its release time. We call the
interval (r; .(;), ¢i ;] the critical interval. For exam-
ple, in Figure 5, J; 3 is the critical job of J; 5, and

Is |

Input:

A set J of jobs where each job J; ; has a release time

G1 G2 G3 Ga

Fig. 5. Critical Job in a Schedule

interval (r; 3, ¢; 5] is the critical interval. The follow-
ing two lemmas state facts that help us to bound the
duration of the critical interval (r; c(;), ¢i j].

Lemma 2: At most one job blocks a job in the crit-
ical interval (r; c(;), cij]-
Proof: Clearly a job with a priority lower than
Ji ey that is in a critical section at r; .(;) can block
Jie(j) and execute in the critical interval. That the
subsequent jobs J; .(j)41,--.,Ji; are never blocked
(and hence no other lower priority jobs can execute
in (7; c(j), ¢i,j]) follows from the fact that each of these
jobs are ready immediately after its immediate pre-
decessor completes. |

Lemma 3: Any job that isin a job chain other than
J; and executes in the critical interval (r; c(;),ci ;]
must either have a priority higher than or equal
to the priority of J;iow, Where job J; 0w (c(j) <
low < j) is the lowest priority job among jobs J; c(;),
Ji ()41, -+ Jij, or is a lower priority job that can
block Jz,c(])

Proof: A job J; that is in another job chain
Ji, k # 1, and has a priority lower than J; ;0 cannot
preempt any of the jobs J; c(;y, Ji c(j)41: - - +» Jij. Ac-
cording to Lemma 2, only J; .(;) can be blocked and
it can be blocked by at most one job. |

According to Lemmas 2 and 3, the jobs of equal
or higher priority that are in job chains other than
J; and can execute in the critical interval (r; c(;), ¢i ;]
are the same set of equal or higher priority jobs that
are in job chains other than J; and can execute in the
interval (¥i iow, i jow]. Consequently, their total exe-
cution time can be bounded by totallnter(J; 10w, J).
The duration of the critical interval is never larger
than this amount plus the maximum execution times
of Ji,c(j)a Ji,c(j)+1a ey Ji,j and blOCk(Jl‘yc(j), J), the
longest critical section of jobs that have lower pri-
orities than J; .(;) and are in job chains other than
J;. In other words,

i
cij < TieG)t Y e (6)
1=2(j)

+ totallnter(Ji 10w,) + block(J; o¢jy, J)

Because it is possible for a job Ji i, & # i, to block
Ji () and a subsequent interference block in Ji to
preempt one of the jobs among J; c(jy41,---,Jij,

r; j, a priority ¢; ;j, a range [e:] , ej:]] of execution time,

Gs and a maximum duration D; ; of critical sections in the
job.

Output: The bound &; ; on the completion time of each job
Ji -

Algorithm:
For each job J; ;,
1. for each possible critical job J; 5 (1 < k < j),
(a) find the job J; ;5. such that J; ;,, has the

lowest priority among job

Sk i kt15--5di g3
(b) compute
J
bip = ri7k+zejfl+block(J17k,J)
1=k

+ totallnter(J; jou, J)-

2. Let 657J = maXlSkS]{bi,k}'

Fig. 6. Algorithm CJA

we cannot tighten the bound as we did in Al-
gorithm ERT by subtracting the minimum of
mininter(J; 10w, J) and block(J; c(;),J).

In the above critical job analysis, we assume that
we know the critical job J; .(;y of each target job J; ;
in the worst-case schedule. This assumption is not
true in general. To get around this problem, Algo-
rithm CJA computes a bound on the completion time
of J; ; by assuming that each of its predecessors, in-
cluding J; ; itself, is the critical job. Since in the
worst-case schedule there must exist a critical job,
one of the bounds thus computed must be a correct
one, and the maximum of these bounds must be a
correct bound as well. The pseudo code of Algorithm
CJA is listed in Figure 6. Its complexity is O(N?).
We again use ¢; ; to denote the upper bound on the
completion time of J; ;.

For example, we apply Algorithm CJA to bound
the completion time of J; 3 in Example 1 and obtain
the following results. In the description, we treat
each predecessor J; ; of the target job and the target
job as the critical job in turn and compute the upper
bound b; of the completion time of the target job
according to Step 1(b) of Figure 6.

1. Let Ji: be the critical job. Job J;; has the
lowest priority among Jy 1, J1,2 and Jy 3, 50 by 1
is equal to 190.

2. Let Jy 2 be the critical job. Job Ji 3 has the
lowest priority among Ji 2 and Jy 3, so by 2 is

TABLE III
Bounps CoMPUTED BY ALGORITHM ERT anD CJA

Jig | Jig | Jia | Jia | J2n | Jep | J2s
ERT 100 170 260 370 90 180 380
CJA 150 160 215 265 100 160 320

equal to 170.

3. Let Jy 3 be the critical job. Job Ji 3 is also the
lowest priority job, so by 3 is equal to 215.

4. The bound é; 3 is equal to max{b1 1, b1 2, b1 3} =
215.

We note that when computing the bounds by 1, b7 »
and b; 3, and hence the final bound, the delay from
every job in Js is counted only once. As a result,
the bound obtained by Algorithm CJA for Ji 3 is
tighter than that obtained by Algorithm ERT. For
the same reason, the bounds obtained by Algorithm
CJA for Jy o, J1,4, J2,2, and Ja 3 are tighter than
those computed by Algorithm ERT. Table IIT lists
the bounds on the completion times computed by Al-
gorithm CJA for all the jobs in Example 1. For the
sake of comparison, the bounds computed by Algo-
rithm ERT are also listed in the table.

When no job has a critical section every bound
obtained by Algorithm CJA is tighter than the cor-
responding bound obtained by Algorithm ERT. To
compare the bounds we let ¢; ; denote the bound on
the completion time of J; ; computed by Algorithm
ERT. From Egs. (1), (4), and (5), we can write ¢; ;
as

éiyj > éi,j—l + 6?:]» + total[nter(]iyj, J) (7)
and
Cij>rij+ “3;",—]' + totallnter(J; j,J) (8)

for the special case where the delay due to blocking
is zero for every job. Given any k (1 < k < j), we ex-
pand ¢; ; recursively using the above two inequalities
to obtain

J J
2 St Y ttier(1,3) 0
=k =k

On the other hand, Step 1(b) of Algorithm CJA in
Figure 6 states that

J
bik =Tik+ E e}, + totallnter(J; 10w,) (10)
=k

where 1 < k < j and k < low < j. Comparing Egs.
(9) and (10) we can see that in this special case the

bound computed by Algorithm ERT is greater than
or equal to every b; computed by Algorithm CJA
and hence is greater than or equal to the maximum
of b; s, which is the final bound computed by Algo-
rithm CJA.

Table IIT shows that in general the bounds com-
puted by Algorithm CJA are not always tighter than
those computed by Algorithm ERT. In this exam-
ple, the length of the critical sections are relatively
large compared with the execution time of the jobs.
(We choose these numbers to illustrate the effect of
blocking.) The critical sections of actual systems are
likely to be relatively short. Since Algorithm CJA
considers subchains of the target job, it is expected
to perform better than Algorithm ERT on average.
The simulation results in Section VI support this con-
clusion.

V. ArcgoriTHM ITR

An obvious drawback of the previous algorithms is
that the release times of jobs are not taken into ac-
count. For example, when the maximum delay suf-
fered by Ji; in Example 1 is computed, the criti-
cal section of Js 3 is counted in the delay. However,
we notice that J; 3 will not be released until time
120, by which time J; ; should have completed even
when J; ; has its maximum execution time and is
preempted by J3 1 and J3 2. Hence one improvement
is to remove from consideration the jobs (such as J; 3
in this example) that cannot possibly delay with the
execution of the target job. In other words, in Step
1(b) of Algorithm CJA, if we can prune some jobs
from the job set J that cannot possibly execute in
the critical interval, we can obtain a tighter bound on
the maximum possible delay the job J; ; might suffer.
Clearly, for each target job the pruning process must
be done for every assumed critical job because differ-
ent jobs may be pruned for different combinations.

The next question is how to obtain the informa-
tion we need to prune jobs properly. One approach
is called pessimistic iteration. First we use Algo-
rithm CJA to obtain an initial bound on the com-
pletion time of every job. We then iteratively apply
the modified Algorithm CJA to obtain a new bound
on the completion time of each job. When bound-
ing the duration of the critical interval for each pair
of target job J; ; and assumed critical job J; .(;), the
modified Algorithm CJA excludes from consideration
any job Jg; whose interval (7, ¢] does not over-
lap with the interval (r; c(;), ¢i], where ¢g; and ¢ ;
are the bounds on the completion times of Ji; and
J; j, respectively, obtained in the initial step or the
previous iteration step. This pruning process is safe
because ¢; ;’s computed in the initial step and each of

the previous iteration step are correct upper bounds
on the completion times of jobs and, hence, all the
pruned jobs cannot execute in the critical interval
(7i,c(4), ¢i,7]- The iteration will terminate when all the
new bounds obtained in the current step are equal
to the corresponding bounds obtained in the pre-
vious step. Obviously, during each iteration before
termination, at least one bound on the completion
time of a job is strictly smaller than its correspond-
ing previous one. Since bounds cannot be arbitrarily
small, the iteration will terminate in a finite number
of steps.

Although the pessimistic iteration approach im-
proves the bounds in general, it does not provide a
tight bound in our example. We notice that job Ji ;
in Example 1 is both the target job and the criti-
cal job. The initial bound on the completion time of
J11 1s 150. Based on this bound, interval (71 1, ¢é1 1]
overlaps with critical interval (ry 3, é2 9] of job Jg 1.
Consequently Ja 2 and J2 3 will not be pruned by the
pessimistic iteration approach.

A more aggressive approach is called optimistic it-
eration. Contrary to pessimistic iteration, optimistic
iteration starts with an optimistic bounds on the
completion times of jobs, obtained by computing the
completion time as if the chain containing the target
job 1s executed in isolation. During each subsequent
iteration, we use the modified CJA algorithm to ob-
tain a new bound on the completion time of each job
J; ; based on bounds obtained in either the previous
iteration step or the initial step. Like pessimistic iter-
ation, for each pair of critical job J; .(;) and target job
Ji j, we prune any job Ji; whose interval (rg, ég]
does not overlap with the interval (r; c(;), ¢ ;]. The
iteration will terminate when all the new bounds are
equal to the corresponding bounds obtained in the
previous step.

Figure 7 lists the pseudo code of Algorithm ITR,
which uses the optimistic iteration approach. It is es-
sentially a loop which 1s preceded by an initial step.
Inside the loop, Algorithm CJA is applied but is
preceded by two extra steps. Step 2(biA) and Step
2(biB) are inserted to prune the jobs J, , whose in-
tervals (740, ¢u,v] do not overlap with the interval
(7i,c(4), Cij]- Because of the extra pruning steps, the
bounds obtained at the end of the loop body are al-
ways no larger than the corresponding bounds ob-
tained by Algorithm CJA without any pruning. So
are the final bounds when the iteration terminates.

The correctness of Algorithm ITR is stated for-
mally by the following two theorems. Their proofs
are in the appendix.

Theorem 1: Algorithm ITR terminates after a fi-

Input:

A set J of jobs where each job J; ; has a release time

r; j, a priority ¢; ;j, a range [e:] , ej:]] of execution

times, and a maximum duration D; ; of critical sections
in the job.
Output: A bound ¢; ; on the completion time of each job
Ji -
Algorithm:
1. For each job J; j,

+ .

(a’) lf] =1, 6i7J =Tij + 61,]’

(b) otherwise, & ; = max{¢& ;_1,ri;} + ejj];
(<) é’w, the bound on the completion time of J; ;
computed in the previous iteration, is 0.

2. Repeat until (& ; = cA’w) for every job J; ;,

(a) for each job J; ;, é’m =¢éig;
(b) for each target job J; ;,
i. for each possible critical job J; (1 < k < j),
AT =T
B. purge from J’ any job Ju (u #) for
which the interval (T‘uyy,(;/uyv] does not

overlap with the interval (r; x,c’; ;];
C. find the job J; 15, such that J; ;. has
the lowest priority among job J; ,
J¢7k+1, ey Ji,]§
D. compute the bound b; ;. by

J
big = ript Ze:‘l:l + block (Ji i, ')
=k
+ total]nter(Jzylow,JI)

11 let 6¢7] = maxlSkSJ{bﬁk}'

Fig. 7. Algorithm ITR

nite number of iterations.

Theorem 2: The bounds obtained in the last iter-
ation of Algorithm ITR, are correct upper bounds on
the completion times of jobs.

From the proof of Theorem 1, we see that there can
be no more than O(N?) number of iteration steps.
Since each iteration has the same complexity as Al-
gorithm CJA, which is O(N3), the complexity of Al-
gorithm I'TR is thus O(N®).

As an example, we apply Algorithm ITR to bound
the completion time of J; ; in Example 1. The initial
optimistic bound is 40, which is equal to the release
time of J; 1 plus its maximum execution time. Dur-
ing the first iteration, the interval (73 1, é5,1] overlaps
with (71,1, ¢1,1], and therefore J5 ; is retained in J’ at
Step 2(biB). The intervals (rs s, é2 2] and (a3, €3],
however, do not overlap with the interval (rq 1, ¢ 1].

TABLE IV
Bounps COMPUTED BY THE THREE ALGORITHMS AND THE
AcTtuaL WORST-CASE COMPLETION TIMES

Jig | Jig | Jia | Jia | J2n | Jep | J2

ERT 100 170 260 370 90 180 380

CJA 150 160 215 265 100 160 320

ITR 50 60 205 255 50 110 290

Worst 50 60 130 240 50 110 250

Therefore Jy 5 and Js 3 are pruned at Step 2(biB).
The new bound on the completion time of J;; be-
comes 50. During the second and later iterations,
the intervals (g2, é2 2] and (rq 3, é2 3] still do not not
overlap with the interval (rq 1, é1 1], and jobs J3 5 and
Ja 3 are always pruned. Consequently the bound on
the completion time of J; ; remains 50.

The final bounds on the completion times of all
jobs in Example 1 obtained by (optimistic) Algorithm
ITR are listed in Table TV. We also list the bounds
obtained by Algorithm ERT and Algorithm CJA, as
well as the actual worst case completion times of the
jobs. We note that although Algorithm ITR gives
fairly tight bounds compared with the other two al-
gorithms, 1t may still fail to find the actual worst-
case completion times. Take job .J; 3 for example.
Although Algorithm ITR has correctly determined
that the completion of J; 3 is delayed only by J3 5, it
fails to see that the maximum delay caused by Js 2
is less than the maximum execution time of J3 » be-
cause Js o is released 15 time units earlier than J; 3.
It also fails to see that in the worst-case J; 3 will be
ready by time 100 and that the critical section of J5 3
will never be able to block it.

VI. PERFORMANCE OF THE ALGORITHMS

From the previous discussion, we know that
bounds yielded by Algorithm ITR are tighter than
those yielded by Algorithm CJA, which in turn may
be tighter than those yielded by Algorithm ERT, but
we do not know by how much. To quantify their
relative merits and to determine how their relative
performance depends on the characteristics of jobs,
we perform a series of simulation experiments. This
section discusses the criterion used to evaluate their
performance, the method used to generate the work-
load, and finally the simulation results.

A. Performance Criterion

The performance criterion we use to compare two
algorithms, say A and B, 1s the bound ratio or the av-
erage bound ratio of A over B. The ratios are defined
as follows. For a given system of jobs, the bound ra-
tio of (algorithm) A over (algorithm) B for a job is

the ratio of the upper bound on the response time of
the job obtained by A over the corresponding bound
obtained by B. The bound ratio of the system is the
average of the bound ratios of all the jobs in the sys-
tem. In our experiment, we generate many synthetic
systems and compute the bound ratio for each sys-
tem. The average bound ratio is the average of the
bound ratios of all the systems with the same char-
acteristics examined in the experiment. Obviously
the smaller the average bound ratio of A over B, the
better algorithm A is compared with algorithm B,
provided that the ratio is less than 1.

B. The generation of workload

Through preliminary experiment, we found that
performance of the algorithms depends almost en-
tirely on three factors. They are the number of job
chains in the system, the number of jobs in each job
chain and the density of the schedule, or the schedule
density. Intuitively, the density of a schedule indi-
cates how “sparse” the schedule is. It can be quan-
tified by the density factor, which is the total maxi-
mum execution time of all jobs divided by the range
of release times of jobs. For example, if the release
times of jobs are distributed in the range of [1, 1000]
and the total maximum execution time of all jobs
is equal to 1500, then the schedule density factor is
equal to 1.5. The smaller the schedule density factor,
the “sparser” the schedule.

A configuration is a unique combination of values
of the above three factors. We say that synthetic sys-
tems have the same configuration when they have the
same number of job chains, number of jobs per job
chain, and schedule density. In our simulation exper-
iment, we examined configurations with the number
of job chains being 5, 10, or 15, the number of jobs
per job chain being 1, 2, 5, or 10, and the schedule
density being 0.5, 1, or 2. We thus have 36 config-
urations. For each configuration, we generated 1000
systems to yield negligibly small confidence intervals
for all the average values presented below.

Each system of a configuration with = job chains,
y jobs per chain and schedule density z, is generated
as follows. For each of the x job chains and each of
the y jobs in the chain, we choose the release time
of the job from a uniform distribution in the range
[1,1000000]. We then sort the jobs in each job chain
in increasing order by their release times and add a
precedence constraint to each pair of adjacent jobs in
the job chain.

To choose the execution times of the jobs, we
first compute the total maximum execution time of
all jobs by multiplying the schedule density z by
the range of job release times, 1000000. We then

10

randomly divide the total maximum execution time
among the zy jobs. This is done by first generating
an execution factor for each job, which is uniformly
distributed in range [0.01, 1]. We obtain the normal-
ized execution factor for each job by dividing its ex-
ecution factor by the sum of execution factors of all
jobs. The maximum execution time of each job is
then equal to its normalized execution factor times
the total maximum execution time. We let the min-
imum execution time of every job to be 0. Finally,
the priority of every job is randomly distributed in
range [1,10000].

The maximum duration of a critical section of a job
J; ; 1s obtained by multiplying the maximum execu-
tion time 5?,—]' by a blocking factor, which is uniformly
distributed 1n the range [0,d]. Because preliminary
experiments showed that the bound ratios are not
sensitive to the value of d, its value was fixed at 1.
Thus the blocking factor of each job is uniformly dis-
tributed in the range [0, 1], and the maximum dura-
tion of a critical section ranges from 0 to the maxi-
mum execution time.

C. Comparison of Algorithm ERT and Algorithm
CJA

In this subsection, by “bound ratio” we mean the
average bound ratio of Algorithm CJA over Algo-
rithm ERT. The simulation results show that bound
ratios are not sensitive to the number of job chains
in the system and the critical section density. For
this reason, we present in Figure 8 the bound ratio
as a function of the number of jobs in each chain and
the schedule density. Each value in the figure is the
average value of the bound ratios of all systems of
a configuration. The overall average bound ratio for
all configurations is 0.77 which indicates that on the
average the bounds on the job response times com-
puted by Algorithm CJA are 23% shorter than the
bounds computed by Algorithm ERT.

In the figure, we notice that the average bound
ratio decreases as the number of jobs in each job
chain increases. A closer examination reveals that
this 1s because the bound ratio for an individual job
is strongly correlated with the position of the job in
the job chain. Figure 9 depicts the average bound
ratio of jobs as a function of their position in the
job chains. The value on the horizontal-axis is the
position of jobs in their corresponding job chains,
and the corresponding value on the vertical-axis is
the average bound ratio for all jobs in that posi-
tion. We notice that for the first job on every job
chain, Algorithm CJA and Algorithm ERT yield the
same bound on the average. If Algorithm ERT used
Eq.(1), both algorithms would in fact do the same

05

Number of Jobsin Each Chain © 9
Fig. 8. Bound Ratio of Algorithm CJA over Algorithm ERT

12

(10, 2,0.45)

2.0

Schedule Density

10

0.8

0.6

Bound Ratio

0.4

0.2

|

0.0

H

4 6
Position in the Job Chain

Fig. 9. Bound Ratio as Function of the Position of Jobs

computation for these jobs. However, the fact is that
Algorithm ERT uses Eq.(3), which can produce a
tighter bound. This result indicates that instances
where the bound produced by Algorithm ERT is
tighter than the corresponding bound produced by
Algorithm CJA are rare. The average bound ratio
decreases as the number of predecessors of the target
job increases, largely due to the fact that Algorithm
ERT sometimes counts the interference and blocking
of jobs multiple times. The later a job is in a job
chain, the more likely Algorithm ERT is to do so. As
a result, a system with longer job chains has a smaller
average bound ratio. Figure 8 shows that the bound
ratio also decreases a little as the schedule density
increases, for a similar reason.

D. Comparison of Algorithm CJA and Algorithm
ITR

In this subsection we focus on Algorithms CJA
and I'TR, and by “bound ratio” we mean the average
bound ratio of Algorithm ITR over Algorithm CJA.

The overall average bound ratio is 0.51 for all config-

10

11

08 (1,2,0.83)
07k . (10, 2,0.84)
Bound Ratio
06 4110
0.8
05 -0.6
o
g 02
04 |- Jo.
g 0.0
® 03 F - 2.0
02 qt
6 < Schedule Density
. .8 9 05
01 < Number of Jobsin Each Chain 10
0.0 L . L L ig. 11. Bound Ratio of Algorithm ITR over Algorithm CJA
4 6 8 10 12 14 16
Number of Job Chains
(1,2,083)
Fig. 10. Bound Ratio as a Function of the Number of Job
Chains in the System Bound Ratio
10 (10, 2,0.35)
08
urations, which indicates that on average the bounds 8-i
on job response times computed by Algorithm ITR 02
are about half the bounds computed by Algorithm 0.0
CJA. 20
Figure 10 depicts the average bound ratio as a 1
function of number of job chains in the system and 4 5 ¢ 10 sthedule Density

shows that the bound ratio of Algorithm ITR over
Algorithm CJA varies slightly but noticeably with
the number of job chains in the system. When the
number of job chains increases while the other two
parameters remain constant, the delay due to inter-
ference and blocking from jobs in different chains in-
creases. Due to the pruning step, Algorithm ITR can
better accommodate the effect of the increase than
Algorithm CJA. As a result, Algorithm ITR obtains
tighter bounds as the number of job chains in a sys-
tem increases.

Figure 11 shows the average bound ratio as a func-
tion of number of jobs in each job chain and the
schedule density. The bound ratios are much smaller
when the schedule densities are smaller, indicating
that Algorithm I'TR is much more effective for sparse
schedules. When the schedule is sparse, many jobs
execute in isolation and do not delay each other. The
pruning step in Algorithm ITR can correctly detect
this and obtain tighter bounds, while Algorithm CJA
does not have this capability.

E. Summary of the Simulation Results

Figure 12 shows the bound ratio of Algorithm ITR
over Algorithm ERT as a function of the number of
jobs in each job chain and the schedule density. As
we expect, the bounds yielded by Algorithm ITR are
much tighter than those by Algorithm ERT. In sum-
mary, we see a great reduction in the upper bounds
on job response times by Algorithm ITR, over Algo-

7 8
Number of Jobsin Each Chain 9 10 05

Fig. 12. Bound Ratio of Algorithm ITR over Algorithm ERT

rithms CJA and ERT. Furthermore, Algorithm ITR
1s more effective when the schedule is sparse and the
number of jobs in the system is large. When the
schedule 1s “dense”, the performance of Algorithm

CJA is close to that of Algorithm I'TR.

VII. EXTENSIONS AND FUTURE WORK

One obvious extension is to combine Algorithm
ERT and Algorithm CJA, selecting the smaller of
the two bounds for each job. A combined algorithm
would yield better bounds than Algorithm CJA in
Example 1 yet have the same complexity as Algo-
rithm CJA (i.e., O(N3)). However, the results pre-
sented in Section VI suggest that little improvement
can be expected on the average.

Thus far we have assumed that the release times of
all the jobs are fixed. In real systems, the release time
of each job is often known to lie within a range, while
the actual release time is not known. The three algo-
rithms presented above can be modified to deal with
jittered release times, i.e., the actual release time of
each job is in a range of [r;j,r?:j]. In the case of
Algorithm ERT, we simply replace all r; ;’s with cor-
responding rlfj’s. The bounds computed by the mod-
ified Algorithm ERT are correct.

In the case of Algorithm CJA, we first need to re-

12

define the critical job of the target job as follows: For
a target job J; ;, the critical job J; .(;y is the last job
in J; before and including J; ; whose ready time is
in its release time range [ri_’c(j), r;c(j)]. By the new
definition, the critical job analysis remains correct in
bounding the duration of interval (r;':c(j), ¢; ;1. Conse-
quently, the pseudo code of Algorithm CJA remains
correct if we replace r;; with 7, at Step 1(b) in
Figure 6. 7

To see how to take into account release time jitter
in the case of Algorithm I'TR, we note that in the ini-
tial steps, Step 1(a) and 1(b) in Figure 7, we should
replace the release time r; ; with the latest possible
release time 7., As a consequence, the initial bounds
are conservative. In Step 2(biB), we need to prune
non-interfering jobs from J’. Due to jittered release,
the interval of a job J, , becomes ('P;U, CA’UVU]. Simi-
larly, the critical interval between the assumed criti-
cal job J; and the target job J; ; becomes (r;, 5’2-7]'].
We can thus test if a job J, , delays the tafget job
based on whether these two intervals overlap. Lastly,
when we compute each individual b; p for each as-
sumed critical job J; x at Step 2(biD), we simply re-
place r; ; with r;':k for a correct final bound.

A problem related to this work is to find the exact
worst-case completion time. Specifically, the prun-
ing technique used in Algorithm ITR can effectively
reduce a large number of combinations when exhaus-
tive searching is used to find the worst-case comple-
tion time.

In the algorithms above, we have assumed that ac-
cess to resources was controlled by the NPS proto-
col. This protocol has the virtue of being simple to
implement. However, all higher priority jobs may
be blocked even if they do not contend for any re-
source. The Priority-Ceiling Protocol (PCP) [10] and
the Stack-Based Protocol (SBP) [11] do not suffer
from this shortcoming. To take advantage of this
desirable property, we are refining Algorithms ERT,
CJA and ITR to use either PCP or SBP. The results
of this work are reported in [12] which also describes
modifications to these algorithms to achieve tighter
bounds.

VIII. CONCLUSIONS

We have described three algorithms that bound
the completion times of jobs in independent chains
when the jobs have variable execution times, arbi-
trary release times, fixed priorities, and when access
to shared resources must be controlled. The algo-
rithms have different complexities and yield differ-
ent performance. Our simulation results show that
Algorithm ITR consistently produces tighter bounds

than the other two algorithms. The example pre-
sented here suggests that the bounds obtained by Al-
gorithm ITR are close to the actual worst-case com-
pletion times. The complexity of Algorithm ITR is
O(NS), where N is the total number of jobs in a sys-
tem. This complexity is not a problem for off-line
analysis. When this complexity is too high, e.g., for
the purpose of on-line admission control, Algorithm
CJA is a good alternative choice, especially when the
schedule is expected to be “dense”.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant No.
NSF CCR 92-24269 and by NASA Contract NAG 1-
613.

APPENDIX A
ProoOF OF THEOREM 1

The bound of the completion time of each job ob-
tained in the first iteration is no smaller than the cor-
responding bound obtained in the initial step, due to
the optimistic estimation used in the initial step. As
a consequence, for each pair of target job and crit-
ical job considered at Step 2(bi), fewer or the same
number of jobs are pruned at Step 2(biB) in the sec-
ond iteration step, making the value of b; p greater
than or equal the corresponding one obtained in the
first iteration step. Hence every bound obtained in
the second iteration step is no smaller than the cor-
responding bound obtained in the first iteration step.
In general, the bounds obtained in each iteration step
are monotonically non-decreasing.

The iteration continues if and only if for at least
one job the new bound is greater than the corre-
sponding bound obtained in the previous step. For
a new bound of a job to be greater than its previ-
ous bound, fewer jobs must have been pruned from
set J' at Step 2(biB) in the current iteration step
than in the previous step. Overall, in each iteration
step, the total number of jobs pruned at Step 2(biB)
must decrease at least by one. Since the total num-
ber of jobs that can be pruned at Step 2(biB) cannot
exceed N?(N — 1) in the first iteration step, the iter-
ative procedure will terminate in a finite number of
iterations. |

APPENDIX B
PrROOF OF THEOREM 2

We prove this theorem by an induction over the
jobs in the increasing order of their release times. By
convention, let ¢; ; denote the bound on the comple-
tion time of J; ; obtained by Algorithm ITR, i.e., the
bound obtained by the last two iteration steps, and

let ¢; ; denote the actual completion time of J; ; in
the schedule.
Induction basis:
jobs are consistent with their precedence constraints,
the job with the earliest release time among all jobs
must be J; 1 for some 2. Suppose that the actual com-
pletion time ¢; ; of J; ;1 is greater than the bound ¢; ;.
Let T denote the total amount of execution times
of all jobs, excluding J; 1, that execute in interval
(ri1,¢i1]. We must have T' 4+ e;1 > é1 — 751 (Oth-
erwise job J; 1 would have completed by time ¢; ;).
Hence T" + e;-"l > G —Ti-

Now let us focus on Steps 2(bi) during the last
(outer-most) iteration step in Algorithm ITR, specif-
ically when J;; is the target job and the critical
job. 1In the last iteration step, for every job Jg,,
the bound é; , obtained is the same as the bound
obtained in the second last iteration step, which is
copied to cA’xyy. Consequently the jobs pruned at Step
2(biB) are those whose release times are later than
¢;i1. Job set J' obtained at this step thus gives all
the jobs that can execute in interval (7;1,¢;1].

Obviously, every job that executes in interval
(ri1, €;,1] must have priority higher than or equal to
Ji1 or must block J; 1. Thus totallnter(J; ;,3') +
block(J; 1,J') gives an upper bound on I'. By Step
2(biD) and 2(bii), we have

I‘—i—ei’l < totallnter(J; 1,3') + block(J; 1,3")

Because the release times of all

+ _ _ 2
+el i =bii—ri1=¢ii1—rin

This is a contradiction to the conclusion stated above.
Therefore the hypothesis must be wrong, and for job
J;,1 Algorithm ITR yields a correct upper bound on
its completion time.

Induction: Now we let J; ; be the job whose re-
lease time is later than the release times of k other
jobs. As an induction hypothesis, we assume that
the completion time of every job released before J; ;
is no larger than the upper bound on its completion
time obtained by Algorithm ITR. We will now prove
that ¢; ; is no larger than ¢; ; either.

We, again, prove this by contradiction. Suppose
that ¢; ; is larger than é ;. Let Ji. (1 < ¢ < j)
be the critical job for J;; in this schedule, and T’
be the total amount of execution times of all jobs
from chains other than J; that execute in interval
(Pi,e, & ;). Since job J; ; is not completed by ¢; ;, we
must have

J J
I‘—}-Ze;{'l > F-‘rzei,l > Cij— Tic
l=c l=c

Now let us focus on Steps 2(bi) during the last
(outer-most) iteration step in Algorithm ITR, specif-

13

ically when J; ; is the target job and J; . is the critical
job. If job J, , is pruned at Step 2(biB), then either
(1) éuw < Pig, O (2) ruy > 5. If ajob Jy, is
pruned due to the first reason, its release time must
be earlier than that of J; ;. By induction hypothe-
sis, the bound é, , is a correct upper bound on the
completion time. Hence we are certain that job J, ,
cannot execute in interval (r;c,¢é; ;]. On the other
hand, if J, , is pruned due to the second reason, it
cannot execute in interval (r; ., ¢; ;] either. Thus the
new job set J’ obtained at Step 2(biB) contains all the
possible jobs that can execute in interval (7; ¢, & ;].

Since no job with priority lower than J; o,
obtained at Step 2(biC), can execute in inter-
val (riec,¢; ;] unless it blocks the critical job J; .,
totallnter(J; jow, J') + block(J; c,J') will give an up-
per bound on T', the total execution time of jobs that
can execute in interval (7; ¢, & ;]. By Step 2(biD) and
Step 2(bii), we have

J
r+ Z e;fl < totallnter(J; 10w, J') + block(J; ¢, J')
l=c

J
+ _ ~
+Q e =hie—Tie <G —Tie

l=c

This contradicts the conclusion we obtained in the
previous paragraph. The hypothesis must be wrong;
we must have ¢; ; < ¢ ;. By induction, we know that
for every job in this schedule its completion time 1s
no longer than the corresponding bound computed

by Algorithm ITR. |

REFERENCES

[1] A. K. Mok, Fundamental design problems of distributed
systems for the hard real-time environment, Ph.D. thesis,
MIT, 1983.

[2] R.Rajkumar, L. Sha, and J. P. Lehoczky, “Real-time syn-
chronization protocols for multiprocessors,” in 9th IEEE
Real-Time Systems Symposium, Dec. 1988, pp. 259—-269.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time environment,”
Journal of the Association for Computing Machinery,
vol. 20, no. 1, pp. 46-61, Jan. 1973.

[4] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm: Exact characterization and aver-
age case behavior,” in 10th IEEFE Real-Time Systems
Symposium, Dec. 1989, pp. 166-171.

[6] J. Lehoczky, “Fixed priority scheduling of periodic task
sets with arbitrary deadlines,” in 11th IEEE Real-Time
Systems Symposium, Dec. 1990, pp. 201-209.

[6] N. Audsley, A. Burns, K. Tindell, M. Richardson, and
A. Wellings, “Applying new scheduling theory to static
priority pre-emptive scheduling,” Software Engineering
Journal, vol. 8, no. 5, pp. 284-292, 1993.

[7] M. G. Harbour, M. H. Klein, and J. P. Lehoczky, “Tim-
ing analysis for fixed-priority scheduling of hard real-time
systems,” IEEE Transactions on Software Engineering,
vol. 20, no. 1, pp. 13-28, Jan. 1994.

[8] J.P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda,
“Fixed priority scheduling theory for hard real-time sys-

14

tems,” in Foundations of Real-Time Computing, Schedul-
ing and Resource Management, A. M. Tilborg and G. M.
Koob, Eds., chapter 1. Kluwer Academic Publishers,
1991.
[9] R. Ha, Validating Timing Constraints in Multiproces-
sor and Distributed Systems, Ph.D. thesis, University of
Illinois at Urbana-Champaign, Department of Computer
Science, 1995.
L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority in-
heritance protocols: An approach to real-time synchro-
nization,” IEEE Transactions on Computers, vol. 39, no.
9, pp. 1175-1185, Sept. 1990.
T. P. Baker, “A stack-based resource allocation policy for
real-time processes,” in 11th IEEE Real-Time Systems
Symposium, 1990, pp. 191-200.
M. K. Gardner, “Resource sharing among linear job
chains,” Tech. Rep. UITUCDCS-R-97-2010, University of
Illinois at Urbana-Champaign, Department of Computer
Science, Aug. 1997.

(10]

(11]

(12]

Jun Sun received his BS degree from
Shanghai Jiao Tong University, China,
in 1989 and received his Ph.D. degree
in computer science from University of
Illinois at Urbana-Champaign, 1997. He
is now a Design Engineer at Geoworks
Inc. in California. His research inter-
est includes real-time scheduling, em-
bedded systems, distributed computing
and operating systems. He is the recipi-
ent of the Outstanding Paper Award in
the 16th International Conference on Distributed Computing
Systems. Dr. Sun is a member of IEEE and Upsilon Pi Ep-
silon.

Mark K. Gardner received his B.S.
degree with honors in mechanical engi-
neering and his M.S. in computer sci-
ence from Brigham Young University
(Provo, UT) in 1986 and 1994, respec-
tively. He is currently a Ph.D. student
in computer science at the University of
Illinois at Urbana-Champaign. Before
returning to school to pursue his M.S.
degree, he worked as an aerodynamic
engineer for Allied-Signal Aerospace,
Garrett Auxiliary Power Division (Phoenix, AZ). His research
interests include real-time systems, programming languages,
operating systems, performance analysis, and software engi-
neering. He is a student member of the IEEE and ACM. He
is also a member of the American Society of Mechanical Engi-
neers and Tau Beta Pi.

Jane W.S. Liu received her BSEE de-
gree in 1959 from the Cleveland State
University, Ohio. She received her MS
and ScD degrees in 1966 and 1968, re-
spectively, from the Massachusetts In-
stitute of Technology. She
rently a professor of computer science
at the University of Illinois at Urbana-
Champaign. Before joining the Univer-
sity of Illinois in 1973, she worked as an

is cur-

electronics engineer for the U.S. Depart-
ment of Transportation, the Mitre Corporation, and the Radio
Corporation of America. Her research interests are in the ar-
eas of real-time systems, distributed systems, and networks.
She served as chair of the IEEE Computer Society Techni-
cal Committee on Data Base Engineering in 1981 and 1982,
and chair of the Technical Committee on Distributed Process-
ing in 1989 and 1990. She is the editor-in-chief of the IEEE
Transactions on Computers and an associate editor of the In-
ternational Real-Time Systems Journal. She is a fellow of the

IEEE and a member of the ACM.

